Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization.
نویسندگان
چکیده
The objective of the present study was to determine the location of the cholinergic neurons activated in the spinal cord of decerebrate cats during fictive locomotion. Locomotion was induced by stimulation of the mesencephalic locomotor region (MLR). After bouts of locomotion during a 7-9 h period, the animals were perfused and the L(3)-S(1) spinal cord segments removed. Cats in the control group were subjected to the same surgical procedures but no locomotor task. The tissues were sectioned and then stained by immunohistochemical methods for detection of the c-fos protein and choline acetyltransferase (ChAT) enzyme. The resultant c-fos labeling in the lumbar spinal cord was similar to that induced by fictive locomotion in the cat. ChAT-positive cells also clearly exhibited fictive locomotion induced c-fos labeling. Double labeling with c-fos and ChAT was observed in cells within ventral lamina VII, VIII, and possibly IX. Most of them were concentrated in the medial portion of lamina VII close to lamina X, similar in location to the partition and central canal cells found by Barber and collaborators. The number of ChAT and c-fos-labeled neurons was increased following fictive locomotion and was greatest in the intermediate gray, compared with dorsal and ventral regions. The results are consistent with the suggestion that cholinergic interneurons in the lumbar spinal cord are involved in the production of fictive locomotion. Cells in the regions positive for double-labeled cells were targeted for electrophysiological study during locomotion, intracellular filling, and subsequent processing for ChAT immunohistochemistry. Three cells identified in this way were vigorously active during locomotion in phase with ipsilateral extension, and they projected to the contralateral side of the spinal cord. Thus a new population of spinal cord cells can be defined: cholinergic partition cells with commissural projections that are active during the extension phase of locomotion.
منابع مشابه
Cholinergic Partition Cells and Lamina X Neurons Induce a Muscarinic-Dependent Short-Term Potentiation of Commissural Glutamatergic Inputs in Lumbar Motoneurons
Acetylcholine and the activation of muscarinic receptors influence the activity of neural networks generating locomotor behavior in the mammalian spinal cord. Using electrical stimulations of the ventral commissure, we show that commissural muscarinic (CM) depolarizations could be induced in lumbar motoneurons. We provide a detailed electrophysiological characterization of the muscarinic recept...
متن کاملLocalization of spinal neurons activated during locomotion using the c-fos immunohistochemical method.
The c-fos immunohistochemical method of activity-dependent labeling was used to localize locomotor-activated neurons in the adult cat spinal cord. In decerebrate cats, treadmill locomotion was evoked by electrical stimulation of the mesencephalic locomotor region (MLR). Spontaneous or MLR-evoked fictive locomotion was produced in decerebrate animals paralyzed with a neuromuscular blocking agent...
متن کاملSpinal cholinergic interneurons regulate the excitability of motoneurons during locomotion.
To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present study, recordings from motoneurons in spinal cord slices demonstrated that cholinergic activation of m2-typ...
متن کاملCholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and...
متن کاملInvolvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm.
Hippocampal theta rhythm (HPCtheta) may be important for various phenomena, including attention and acquisition of sensory information. Two types of HPCtheta (types I and II) exist based on pharmacological, behavioral, and electrophysiological characteristics. Both types occur during locomotion, whereas only type II (atropine-sensitive) is present under urethane anesthesia. The circuit of HPCth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 6 شماره
صفحات -
تاریخ انتشار 2000